Monotonicity, convexity, and inequalities for the generalized elliptic integrals
نویسندگان
چکیده
منابع مشابه
Monotonicity, convexity, and inequalities for the generalized elliptic integrals
We provide the monotonicity and convexity properties and sharp bounds for the generalized elliptic integrals [Formula: see text] and [Formula: see text] depending on a parameter [Formula: see text], which contains an earlier result in the particular case [Formula: see text].
متن کاملInequalities and bounds for elliptic integrals
Computable lower and upper bounds for the symmetric elliptic integrals and for Legendre’s incomplete integral of the first kind are obtained. New bounds are sharper than those known earlier. Several inequalities involving integrals under discussion are derived. © 2007 Elsevier Inc. All rights reserved.
متن کاملGeneralized Convexity and Integral Inequalities
In this paper, we consider a very useful and significant class of convex sets and convex functions that is relative convex sets and relative convex functions which was introduced and studied by Noor [20]. Several new inequalities of Hermite-Hadamard type for relative convex functions are established using different approaches. We also introduce relative h-convex functions and is shown that rela...
متن کاملAsymptotic Formulas for Generalized Elliptic-type Integrals
Epstein-Hubbell [6] elliptic-type integrals occur in radiation field problems. The object of the present paper is to consider a unified form of different elliptic-type integrals, defined and developed recently by several authors. We obtain asymptotic formulas for the generalized elliptic-type integrals. Keywords—Elliptic-type Integrals, Hypergeometric Functions, Asymptotic Formulas.
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2017
ISSN: 1029-242X
DOI: 10.1186/s13660-017-1556-z